# Quantifying membrane-receptor binding kinetics using single particle tracking data

#### Raibatak Das

Jennifer Morrison, Christopher Cairo and Dan Coombs

## Membrane receptor dynamics



[www.cellsignaling.com]

## Membrane receptor dynamics



[www.cellsignaling.com]

## Membrane receptor dynamics



What information does membrane-receptor dynamics (specifically, receptor mobility) reveal about signaling transduction



## What factors affect receptor mobility?

- Molecular characteristics (size, number of transmembrane domains).
- Receptor aggregation.
- Membrane organization and heterogeneity.
- Interactions with other proteins, eg: cytosolic signaling proteins.

## Single particle tracking

Technique to observe dynamics of optically tagged biomolecules with high spatiotemporal resolution.

## Single particle tracking

Technique to observe dynamics of optically tagged biomolecules with high spatiotemporal resolution.



murine polyoma virus-like particles on live mouse fibroblasts.

## Single particle tracking

Technique to observe dynamics of optically tagged biomolecules with high spatiotemporal resolution.



murine polyoma virus-like particles on live mouse fibroblasts.

## LFA-I

- Cell surface integrin receptor.
- Binds to ICAM-1.
- Mediates immune synapse formation between a T cell and an APC
- Interacts with the actin cytoskeleton to modulate lymphocyte adhesion and migration.



Image from Dustin lab

## SPT analysis of LFA-I

Previous analysis of LFA-1 trajectories on Jurkat cells revealed two diffusive states.



 Trajectories classified based on the fits of the observed mean squared displacement to the following equation:

Pata were acquired at 1000 Hz.

This and other evidence points to interactions between LFA-1 and the actin cytoskeleton that modulates LFA-1 mobility.

There may be transient changes within each trajectory, on a shorter timescale relative to the total acquisition time.

 $MSD(t) = 4Dt^{\alpha}$ 

ion of diffusion coefficients ed into two categories.

## SPT analysis of LFA-I

Previous analysis of LFA-1 trajectories on Jurkat cells revealed two diffusive states.



 Trajectories classified based on the fits of the observed mean squared displacement to the following equation:

Pata were acquired at 1000 Hz.

This and other evidence points to interactions between LFA-1 and the actin cytoskeleton that modulates LFA-1 mobility.

There may be transient changes within each trajectory, on a shorter timescale relative to the total acquisition time.

 $MSD(t) = 4Dt^{\alpha}$ 

ion of diffusion coefficients ed into two categories.

This analysis captures an equilibrium distribution, but not the dynamic transitions between the two states.

#### A 2-state diffusion model

We developed a 2-state model to capture the dynamics of LFA-1 interactions with the actin cytoskeleton.

$$P + S \stackrel{k_{\text{on.true}}}{\rightleftharpoons} C$$
 $k_{\text{off}}$ 

## A 2-state diffusion model

We developed a 2-state model to capture the dynamics of LFA-1 interactions with the actin cytoskeleton.

$$P + S \stackrel{k_{\text{on.true}}}{\rightleftharpoons} C$$
 $k_{\text{off}}$ 

#### Model assumptions:

- 1. Spatially homogeneous substrate distribution.
- 2. Distinct diffusion coefficients for the two states.
- 3. Particle state changes nearly instantaneously (relative to the acquisition frame rate), and only at the acquisition time.

#### Consequences of the assumptions:

Spatially homogeneous substrate distribution.

Effectively first order binding with a forward rate constant

$$k_{\rm on} = k_{\rm on.true}[S]_{\rm eq}$$

Distinct diffusion coefficients for the two states.

$$D_1 \overset{k_{\text{on}}}{\underset{k_{\text{off}}}{\rightleftarrows}} D_2$$

Particle state changes nearly instantaneously (relative to the acquisition frame rate), and only at the acquisition time.

$$p_{12} = \frac{k_{\text{on}}}{k_{\text{on}} + k_{\text{off}}} \left[ 1 - e^{-(k_{\text{on}} + k_{\text{off}})\tau} \right]$$

$$p_{21} = \frac{k_{\text{off}}}{k_{\text{on}} + k_{\text{off}}} \left[ 1 - e^{-(k_{\text{on}} + k_{\text{off}})\tau} \right]$$

Mention that tau = 1/frame

## A 2-state hidden Markov model



## A 2-state hidden Markov model



- Model parametrized by  $\theta = \{D_1, D_2, p_{12}, p_{21}\}$
- The likelihood function  $L[\theta|O]$  describes how likely it is to observe the given set of tracks.
- An efficient algorithm exists to compute the likelihood function for a given set of parameter values.

## HMM parameter optimization

We use a stochastic likelihood maximization scheme to determine the most likely parameter values for an observed set of tracks.



## HMM parameter optimization

We use a stochastic likelihood maximization scheme to determine the most likely parameter values for an observed set of tracks.



Extensive tests with simulated particle tracks show that this analysis is robust over a wide range of parameters, provided  $D_1 > 2D_2$ 

## HMM vs. MSD analysis



- Greater precision in estimating diffusion coefficients.
- Transition probabilities contain kinetic information ( $k_{on}$  and  $k_{off}$ )
- Possible to statistically test for the most optimal model using AIC.

## Application to LFA-1 data

2-state model is substantially statistically preferred over a 1-state model for LFA-1 mobility.

Justifications for HMM

D1 and D2 are well separated.

p1 2 and p21 << frame rate

## Application to LFA-1 data

2-state model is substantially statistically preferred over a 1-state model for LFA-1 mobility.

What biological insights does the HMM analysis provide?

| Treatment      | Dı    | D <sub>2</sub> | <b>Þ</b> 12 | <b>P</b> 21 | K=kon/koff | Deff  |
|----------------|-------|----------------|-------------|-------------|------------|-------|
| Control        | 0.081 | 0.015          | 3.9         | 9.8         | 0.4        | 0.062 |
| Cytochalasin D | 0.088 | 0.019          | 2.5         | 11          | 0.22       | 0.076 |
| PMA            | 0.057 | 0.008          | 19          | 23          | 0.81       | 0.035 |

ICAM-I ligated LFA-I on Jurkat T cells.

\*  $D_{eff}$  is the diffusion constant for a 1-state model. Units: Diffusion coefficients in  $\mu m^2/s$ .

Transition probabilities in Hz.

Justifications for HMM
D1 and D2 are well separated.
p1 2 and p21 << frame rate

## Application to LFA-1 data

2-state model is substantially statistically preferred over a 1-state model for LFA-1 mobility.

What biological insights does the HMM analysis provide?

| Treatment      | Dı    | D <sub>2</sub> | <b>Þ</b> 12 | <b>P</b> 21 | K=kon/koff | $D_{ m eff}$ |
|----------------|-------|----------------|-------------|-------------|------------|--------------|
| Control        | 0.081 | 0.015          | 3.9         | 9.8         | 0.4        | 0.062        |
| Cytochalasin D | 0.088 | 0.019          | 2.5         | П           | 0.22       | 0.076        |
| PMA            | 0.057 | 0.008          | 19          | 23          | 0.81       | 0.035        |

ICAM-I ligated LFA-I on Jurkat T cells.

\*  $D_{eff}$  is the diffusion constant for a 1-state model. Units: Diffusion coefficients in  $\mu m^2/s$ .

Transition probabilities in Hz.

Disrupt equilibr

Justifications for HMM

equilibr D1 and D2 are well separated.

pl 2 and p21 << frame rate

Multiple

ed activation:

ton shifts the

- 1. Possible changes in binding partner(s).
- 2. Dynamic remodelling of the actin cytoskeleton.

## Further developments

The basic 2-state diffusion model can be extended to include additional states and other modes of motion, eg: drift + diffusion.



 Analysis of LFA-I and CD45 trajectories does not support a model with directed motion

[Analysis and figures by Jennifer Morrison]



## Toward a spatial model: Trajectory segmentation



- The 2-state HMM analysis allows us to infer the most probable sequence of state switching within individual trajectories
- Experimental LFA-1 trajectories show a range of switching behaviour, suggesting a role for spatial heterogeneity and/or confinement.



## Summary

The hidden Markov analysis exposes transient changes in mobility that occur on a short time scale within single trajectories.

The likelihood-based model comparison allows for optimal model selection.

LFA-I dynamics are well-described by a 2-state model with a reduced mobility state due to LFA-I interactions with the actin cytoskeleton that undergo large-scale changes upon cellular activation.

The HMM analysis can be extended to test for transient drift and spatial confinement.

## Acknowledgements

- Dan Coombs
- Jennifer Morrison
- Christopher Cairo
- Golan Lab
- Gerda deVries, Vishaal Rajani, Gustavo Carrero







